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Transport of spheres suspended in the fluid
flowing between hexagonally arranged cylinders
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(Received 20 December 2004 and in revised form 19 September 2005)

The motion of a spherical particle suspended in an incompressible Newtonian fluid
flowing longitudinally between hexagonally arranged circular cylinders has been
numerically analysed by a finite-element method in the Stokes flow regime. The results
are applied to study the diffusive and convective transport of spherical solutes across
the vascular endothelial surface glycocalyx, based on the quasi-periodic ultrastructural
model. The obtained values of diffusive permeability and reflection coefficient of the
solutes show a reasonable agreement with experimental observations, and conform to
the hypothesis that the endothelial surface glycocalyx forms the primary size selective
structure to solutes in microvascular permeability.

1. Introduction
The luminal surface of vascular endothelial cells is lined with a glycocalyx, a

layer of macromolecules such as proteoglycans and glycoproteins. The importance
of its physiological functions has been widely recognized, since the glycocalyx has
been shown to influence several aspects of vascular function, including endothelial
permeability to water and solutes, leukocyte adhesion and emigration, microvascular
haematocrit and metabolic products of endothelial cells (Pries, Secomb & Gaehtgens
2000; Weinbaum et al. 2003). Among these functions, we focus here on its role as
a molecular sieve for the filtering of plasma proteins, when they are transported
between the circulating blood and surrounding tissues.

Detailed structures of the glycocalyx were not known until recently. By structural
analysis of glycocalyx samples prepared in a variety of ways for electron microscopy,
Squire et al. (2001) showed that there is an underlying three-dimensional fibrous
meshwork within the glycoclayx with characteristic spacings of about 20 nm. Based
on this observation, they proposed a structural model of the endothelial surface
glycocalyx, as shown in figure 1. It consists of clusters of fibrous strands projecting
normally to the surface of the luminal wall and the core protein clusters form a
hexagonal two-dimensional lattice on the endothelial cell surface, with an intercluster
spacing of about 100 nm. Within each cluster there is a common parallel periodicity
of about 20 nm. Squire et al. assumed a two-dimensional square lattice of the core
proteins with 20 nm spacing in each cluster across the endothelial surface; they
pointed out that this spacing and a fibre diameter of 10–12 nm provide just the size
regime to account satisfactorily for the observed molecular filtering. Instead of the
square lattice of the core proteins, Weinbaum et al. (2003) proposed their hexagonal
arrangement with a spacing of 20 nm in the idealized model, and showed that this
new structure provides a much improved description of the hydraulic resistance of
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Figure 1. Sketch of the glycocalyx bush structure showing core protein arrangement and
anchoring foci (modified from Squire et al. 2001; Weinbaum et al. 2003).

the glycocalyx as well as a better prediction for the reflection coefficient, compared
to previous predictions.

Based on a simplified model of the glycocalyx structure proposed by Squire
et al. (2001) and Weinbaum et al. (2003), we here consider transport of solutes
and solvent through the glycoclayx, using an idea developed for membrane transport.
From thermodynamic principles, the solute flux Js and solvent flux Jv per unit cross-
sectional area of a membrane can be approximately expressed as the summation
of two terms proportional to an applied concentration difference �c of solutes and
pressure difference �p across the membrane (Kedem & Katchalsky 1958, 1961; Curry
1984; Taylor & Granger 1984):

Js = ωRT �c + (1 − σ )c∗Jv, (1a)

Jv = Lp(�p − σRT �c), (1b)

where R is the gas constant, T is absolute temperature and c∗ is the average
concentration of solutes within the passages of the membrane. In these equations,
called as Kedem–Katchalsky equations, the transport property is represented by three
parameters: the diffusive permeability ω; the hydraulic conductivity Lp; and the
reflection coefficient σ . In the present study, we consider the motion of solutes and
the suspending fluid between a regular arrangement of core proteins as a model of
the glycocalyx, and directly evaluate these coefficients Lp , ω and σ , by numerical
computations. In § 2.1, we shall derive the expressions for ω and σ in terms of fluid
mechanics, and the results and discussion will be provided in § 3 on the transport
property of the endothelial surface glycocalyx.

2. Formulation and methods
2.1. Expressions for ω and σ

We consider the transport properties of the glycocalyx, by using a simple model based
on the glycocalyx structure in figure 1. We assume that the solutes are rigid spheres
with radius a, the solvent is an incompressible Newtonian fluid with viscosity µ, and
the solution is dilute. For simplicity, the core proteins of the glycocalyx in figure 1
are assumed to have a circular cylindrical shape with diameter 2rf = 12 nm, and to
form a hexagonal arrangement with length L = 20 nm, as shown in figure 2. We also
assume that the length of the core proteins, l, is long enough compared to a, rf and
L so that the end effects on the motion of the solute and the fluid can be neglected.
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Figure 2. Configuration for a solute transport between hexagonally arranged circular
cylinders. We consider the case of a = 2–4 nm, rf = 6 nm, L = 20 nm, and l = 150–400 nm.

The effect of inertia on the motion of the solute and the fluid can be neglected, which
is a prerequisite condition for equation (1).

We analyse the flow field around a solute placed at various positions in the cross-
section of the hexagonally arranged cylinders, and calculate the drag force F acting
on the solute exerted by the surrounding fluid and the torque M about its centre,
in the three cases of (a) a solute moving parallel to the axis of the cylinders in an
otherwise quiescent fluid, (b) the fluid flowing over a stationary solute, driven by a
pressure gradient along the cylinder axis, and (c) a solute rotating with a constant
angular velocity in an otherwise quiescent fluid. In case (c), the direction of rotation is
specified depending on the position of the solute, as will be explained below. Denoting
the translational velocity of the solute in case (a) as U , the mean velocity of the fluid
averaged over the cross-sectional area available for the fluid in case (b) as V , and the
angular velocity of the solute in case (c) as Ω , we define drag coefficients and torque
coefficients as Ft = F/6πµaU and Mt = M/8πµa2U in case (a), F0 = F/6πµaV and
M0 =M/8πµa2V in case (b), and Fr = F/6πµa2Ω and Mr = M/8πµa3Ω in case (c).
In general, the drag forces and torques are vectors with three components. However,
linearity of the governing equations and symmetry of the configuration indicate that
the drag forces in cases (a) and (b) have only the components along the axis of the
cylinders. In addition, we treat only the configurations where the direction of the
torque on the solute is known beforehand, that will be explained in the following
paragraphs. The direction of rotation in case (c) is determined according to it. As a
result, all quantities appeared here can be expressed as scalars.

We consider steady and isothermal transport of the solutes at T (K) along the
axis of the cylinders when the pressure difference and the concentration difference
of the solutes are present across both ends of the cylinders. Mechanical and
thermal equilibrium requires that the hydrodynamic force on a solute exerted by
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the surrounding fluid should be balanced with the gradient of the chemical potential
of the solutes, and the torque on the solute vanishes. If we assume that the pressure
p and the solute concentration c are constant over a cross-section and they vary only
along the axis of cylinders, i.e. the z-direction, these conditions yield for a solute with
velocity U and angular velocity Ω immersed in a mean flow V (Sugihara-Seki 2004),

RT

N c

dc

dz
+ vs

dp

dz
= 6πµa(UFt + aΩFr + V F0), (2a)

8πµa2(UMt + aΩMr + V M0) = 0, (2b)

where vs is the volume of the solute ( = (4/3)πa3) and N is Avogadro’s number.
Eliminating the angular velocity, we have

cU = − RT

6πµaN

dc

dz

1

F ∗ + cV
G∗

F ∗ − 2a2

9µ
c
dp

dz

1

F ∗ , (3)

where

F ∗ =
FrMt − MrFt

Mr

, G∗ =
MrF0 − FrM0

Mr

. (4a, b)

Note that a force-free and torque-free spherical solute placed at any position in
the cross-section translates parallel to the axis of the cylinders, as evident from
symmetry considerations, so that there are no preferred positions of the solute in the
cross-section. Thus, we assume as a first approximation that all possible positions
of the solute in the cross-section have equal probability, except for steric exclusion
near the cylinder surfaces. As a next step, we need to modify this assumption,
considering some possible interactions between the solute and the glycocalyx such as
electrostatic forces on their surface charges. In the present study, however, we focus
on the fluid mechanical interaction and do not consider the charge effect, since it was
shown experimentally that molecular size is a more significant determinant of solute
permeability in continuous capillaries than solute charge (Adamson, Huxley & Curry
1988).

Under the equal probability assumption, we have an expression for the solute flux
as Js = (1/A)

∫
A∗ cUdA, where A represents the cross-sectional area and A∗ is the

area available for the centre of the solute, both of which will be specified below.
Substituting equation (3) and integrating along the z-axis across both ends of the
cylinders with length l yields

Js =
RT

6πµaNl

�c

A

∫
A∗

1

F ∗ dA +
c∗V

A

∫
A∗

G∗

F ∗ dA − 2a2

9µ

B

A

∫
A∗

1

F ∗ dA, (5)

where

c∗ =
1

l

∫ l

0

c dz, B =
1

l

∫ l

0

c
dp

dz
dz. (6a, b)

The first term on the right-hand side of equation (5) represents the diffusive transport
of the solutes due to the concentration difference, and the second term describes
the component due to the convection. The third term denotes the diffusive transport
due to the pressure gradient. Since the solution is dilute, the coefficient B may
be approximately rewritten in terms of the mean concentration c∗ and the Darcy
permeability K , defined as Jv = (K/µ)(�p/l), in such a way that B ≈ −c∗(�p/l) ≈
−c∗µJv/K . Then, a comparison with equation (1a) leads to approximate expressions
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Figure 3. Cross-section of the hexagonal arrangement of circular cylinders.

for the diffusive permeability ω and the reflection coefficient σ:

ω

ω0

=
1

A

∫
A∗

1

F ∗ dA, (7)

1 − σ = σc + σd, σc =
1

A′

∫
A∗

G∗

F ∗ dA, σd =
2a2

9K

1

A

∫
A∗

1

F ∗ dA. (8a– c)

Here, ω0 is the unrestricted permeability in an unbounded region (= 1/6πµaNl ), and
A′ is the cross-sectional area available for the fluid. Noting that the mean velocity
V of the fluid is defined as the fluid velocity averaged over the region A′, not A, we
have used the relationship that Jv = A′V/A.

2.2. Method of evaluating Lp , ω and σ

We evaluate the values of ω and σ from equations (7) and (8). Since the whole cross-
section can be divided into equal triangular regions such as OCF shown in figure 3,
we confine ourselves to this region in a way that A in equations (7) and (8) is the area
of triangle OCF, A′ is the area of region OBDF which represents the area available
for the fluid, and A∗ is the area of region OAEF, available for the centre of the solute.
Explicitly, A= L2/8

√
3, A′ = L2/8

√
3 − πr2

f /12 and A∗ = L2/8
√

3 − π(rf + a)2/12.
In equations (7) and (8), the integrations should be performed over the hatched

region OAEF in figure 3, or A∗. Then, the knowledge of F ∗ and G∗ defined by
equation (4) is necessary for all cases when the solute centre is placed at any position
in the region of OAEF. In the present study, however, for simplicity of numerical
computation, we treat only the cases when the solute centre is located on the
perimeter of the region OAEF, that consists of lines OF, FE, OA and arc AE. On
the arc AE, 1/F ∗ and G∗/F ∗ vanish where the solute would touch the surface of
cylinders. Since the configurations on the line FE are identical to those on the line
FG in figure 3(a), we consider here the configurations where the solute centre is
placed on the lines OG and OA. This limitation reduces our numerical computations
considerably, since the directions of torque on the solute in cases (a) and (b) can be
specified beforehand, i.e. along the x-axis on the line OG and along the y-axis on the
line OA. Thus, in case (c), the solute rotation can be confined to be in the x-direction
and the y-direction, respectively. In addition, this simplification allows us to halve
the computational region, owing to symmetry of the flow geometry, and thus greatly
reduce the computational time.

When the solute centre is located on the line OG, it is expressed as (x, y) = (0, cy),

and on the line OA, it is expressed as (x, y) = (cx, 0), where 0 � cy <
√

3L/2 − rf − a
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and 0 � cx <L/2 − rf − a. For a solute with radius a placed at (0, cy) or (cx , 0), the
flow fields around it were computed for the three cases of (a)–(c), by a finite-element
method applied to the Stokes equation and continuity equation (Sugihara-Seki 1996).
On the surfaces of the cylinders and the solute, a no-slip boundary condition was
adopted. Far upstream and downstream from the solute, the velocity profile was
prescribed as that in the absence of the solute, which was obtained by a numerical
computation. In the x- and y-directions, periodic boundary conditions were adopted
at x = ± L/2 and y = ±

√
3L/2.

The computational domain was divided into a number of finite elements. Each
element has a hexahedral shape with 27 nodes including eight corner nodes (Sugihara-
Seki 1996). Using the values of the velocity at the 27 nodes and the values of the
pressure at the eight corner nodes, the velocity and pressure within each element
were approximated by quadratic and linear functions in terms of local coordinates,
respectively. A representative mesh had about 1350 elements and 31 000 unknowns.
A finite-element scheme was formulated in terms of the primitive variables based on
the variational principle, and the assessment of the numerical error has been done
previously (Sugihara-Seki 1996, 2004). Actually, the drag forces acting on a sphere
translating in a two-dimensional channel filled with a Newtonian fluid showed an
agreement within 2 % between the present analysis and Feng, Ganatos & Weinbaum
(1998). We also confirmed the relationship between the drag coefficient on a rotating
sphere Fr and the torque coefficient on a translating sphere Mt as Fr/Mt = 4/3 with
less than 1 % error for all ranges of a, cx and cy we examined.

In each case (a), (b) and (c), we have calculated the drag force and torque acting on
the solute exerted by the fluid flow. By using the values of 1/F ∗ and G∗/F ∗ for various
positions of the solute centre at lines OA and OG, or the perimeter of the region
OAEF, the integrations of equations (7) and (8) were performed approximately by
a numerical library SSLII based on Aitken-Lagrange interpolation (Fujitsu manual,
FACOM FORTRAN SSLII 99SP). As will be explained in § 3.1, the error due to this
interpolation is estimated to be at most a few per cent.

As mentioned above, the velocity profile far upstream and downstream from the
solute has also been computed, by considering the axial flow of the fluid in the
absence of the solute. The results are compared with the analytical solution obtained
previously (Sparrow & Loeffler 1959) and found to show a good agreement. Under
the condition that the solution is dilute, the integration of this velocity profile over
the region A′ provides the flow rate of the solution and its division by the area A

gives the flux Jv . Then, we can evaluate the hydraulic conductivity Lp as the ratio of
Jv and the pressure difference �p between both ends of the cylinders, or the Darcy
permeability K as Jv µl/�p.

According to the experimental observation of the microvascular endothelial surface
glycocalyx of the frog mesentery (Squire et al. 2001), we have adopted typical values
of the parameters such as rf = 6 nm, L = 20 nm, l = 150 – 400 nm, and a = 2 – 4 nm.

3. Results and discussion
3.1. Coefficients 1/F∗ and G∗/F∗

When a solute with radius a (2 � a � 4 nm) is placed at (x, y) = (0, cy) or (cx, 0),
the flow field around the solute and the values of the drag coefficients and torque
coefficients were computed in cases (a)–(c). Our results showed that O(Ft ) = O(F0) =
O(Mr ) = 1, while O(M0) � 10−1 and O(Mt ) = O(Fr ) � 10−2 in all the range we
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Figure 4. (a) Plot of 1/F ∗ for a = 2nm (dash-double dotted curve), 3 nm (dash-dotted curve),
3.5 nm (dashed curve) and 4 nm (dotted curve). (b) Plot of G∗/F ∗for a = 2nm (dash-double
dotted curve), 3 nm (dash-dotted curve), 3.5 nm (dashed curve) and 4 nm (dotted curve). The
solid curve represents the case of a = 0, or the velocity profile of the fluid along the x-axis or
the y-axis, in the absence of the solute.

considered. Thus, we have

1/F ∗ ≈ −1/Ft , G∗/F ∗ ≈ −F0/Ft . (9a, b)

We calculated both sides of equations (9a) and (9b) and found that differences
between them are within 10−4 and 10−3, for equations (9a) and (9b), respectively.
These approximate expressions indicate that the effect of rotational motion of the
solute is minor on the solute transport considered here. This property was also
pointed out in our previous study for transport of spherical solutes through a circular
cylindrical pore (Sugihara-Seki 2004). If we compare the two studies, we see that
the solute rotation is even less important in the present case, which may result from
the presence of smaller portions of solid boundaries of the flow region; in a circular
cylindrical pore, the whole flow region is surrounded by the pore wall where the fluid
velocity has to vanish. In fact, the velocity profile of the fluid in the present geometry
shows more moderate slopes compared to a Poiseuille flow, when the flow is driven
by a pressure gradient along the cylinder axis (see figure 5). It is interesting to note
that the quantity represented by equation (9a) corresponds to the mobility in Einstein
relation, and equation (9b) represents the translational velocity of a solute relative to
the mean velocity of the fluid, U/V, when it is freely suspended in a fluid flow in the
absence of the concentration difference of the solutes.

Figures 4(a) and 4(b) show the plots of 1/F ∗ and G∗/F ∗as functions of the position
of the solute centre, cx , cy, for a =2, 3, 3.5 and 4 nm. From linearity of the problem,
we will find the same curves if the abscissa is replaced by the dimensionless quantities
such as cx/L and cy/L for a/L = 0.1, 0.15, 0.175 and 0.2. It is evident from figure 4(a)
that, for constant a, the values of 1/F ∗ are almost constant over the ranges of cy

except in the proximity of the cylinder surface, and their curves have steep gradients
there. Noticing that the ordinate of figure 4(b) represents the translational velocity of
a freely floating solute, U/V , we see from figure 4(b) that the freely floating solute
translates with a velocity larger than the mean bulk velocity in a wide range of cy ,
especially for small solutes, and their velocities steeply decrease to 0 near the cylinder
surface.
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In figure 4(b), we also plot the velocity profile of the fluid without the solute,
corresponding to the case of a = 0, for reference. This profile has been used to
estimate the accuracy of the present method of integration in equations (7) and (8).
Only from the information of the fluid velocity on the x- and y-axes as shown in
figure 4(b) or on the perimeter of the region OBDF in figure 3, we have estimated
the flow rate over the cross-section OBDF, by the method applied to the integrations
in equations (7) and (8). The difference between this obtained value and the exact
flow rate is about 2.3 %. Then, the error in the estimation of equation (8b) due to
the interpolation may be of the order of several per cent. The errors in equations (7)
and (8c) are expected to be even less since the curves 1/F ∗ in figure 4(a) have wider
ranges of flat portions compared to those of G∗/F ∗ in figure 4(b).

3.2. Hydraulic conductivity Lp

From equation (1b), we have

Lp = Jv/�p |�c=0. (10)

This expression indicates that the hydraulic conductivity can be evaluated by the
ratio of the fluid flux and the pressure drop across both ends of the cylinders, when
the difference in concentration of the solutes is absent. The simplest case satisfying
this condition is when there are no solutes and only the fluid is present. As noted
above, we have computed the flow velocity numerically in this case, and compared
our results with the previous results (Sparrow & Loeffler 1959; Larson & Higdon
1986).

The velocity profile of the fluid is plotted in figure 5, in the rectangular region of
0 � x � L/2 and −

√
3L/2 � y �

√
3L/2. This is comparable to figure 5 of Larson &

Higdon (1986). Sparrow & Loeffler (1959) calculated the values of 4�pA′/µθ0V l,
where θ0 = � OCF = π/6, representing the friction factor multiplied by the Reynolds
number. From figure 7 of their paper, its value is found to be about 16.3, for the
present case of A′/A= 0.6735. The corresponding result of our numerical computation
is 16.4, showing a good agreement. From the relationship K = Jvµl/�p, we have

K/L2 = (4A′2/θ0AL2)(1/16.4) = 0.0152, (11)

where we have used Jv = V A′/A. Then, we have the hydraulic conductivity

Lp = 0.0152x(L2/µl) = (1.52 − 4.06) × 10−8 mPa−1 s−1 (12)

for L = 20 nm, µ = 10−3 Pa s and l = 150 – 400 nm.
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B with K = 6.10 nm2

The contribution of the endothelial glycocalyx to the hydraulic conductivity of the
capillary wall was experimentally studied by Adamson (1990), who measured normal
capillary hydraulic conductivity of single capillaries of frog mesentery as well as after
partial degradation of the endothelial glycocalyx. He observed that the hydraulic
conductivity Lp increased from 2.0 × 10−7 cm s−1 (cmH2O)−1 to 4.9 × 10−7 cm s−1

(cmH2O)−1 after enzymatic degradation, a nearly 2.5 fold increase. This result
indicates that Lp of the glycocalyx alone is of the order of 10−7 cm s−1 (cmH2O)−1 ≈
10−11 mPa−1 s−1, which is three orders of magnitude lower than the value of equation
(12).

This difference may be attributed to several causes. One of them is that in continuous
endothelium, the capillary filtration occurs through interendothelial clefts, whose area
is estimated to be about 1/1000 of the endothelial surface for vessels in frog mesentery
(Fu et al. 1994). So, if the fluid flows only perpendicularly to the endothelial surface
through the glycocalyx, and then into the clefts, the hydraulic conductivity of the
glycocalyx should be given by the value of equation (12) multiplied by the area ratio
of the cleft entrance relative to the endothelial surface (10−3). Another cause may be
that the water inside the glycocalyx is not an ordinary fluid, but in a gel-like state,
so that the value of the fluid viscosity may be enhanced. In addition, the presence of
a three-dimensional fibrous mesh network between core proteins may make the fluid
flow more like a Brinkman type flow than a Newtonian flow (see the next section),
which apparently increases the Darcy permeability K of the whole glycocalyx. More
detailed studies are necessary to clarify the relationship between the present result
and experimental measurements.

3.3. Diffusive permeability ω

By performing the integration of equation (7), we have calculated the diffusive
permeability as a function of the solute radius a. Figure 6 represents our results,
together with the curve obtained based on the Brinkman medium approximation.
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The Brinkman medium is a continuum material characterized by a Newtonian
viscosity µ and the Darcy permeability K , in such a way that its velocity u is
governed by the equation:

−∇p + µ∇2u − µ

K
u = 0. (13)

The Brinkman medium has been widely used to represent approximately the viscous
flow through porous media or fibrous media, under the idea that the effect of the
presence of solid materials on the flow is approximated by that of continuously
distributed point forces whose magnitude is proportional to the flow velocity (Darcy’s
law). Adopting this approximation in the present problem, we assume the glycocalyx
as a continuum material, with the Darcy permeability K given by equation (11).
Since a spherical particle translating in an otherwise quiescent Brinkman medium
experiences the drag force (Brinkman 1947; Sugihara-Seki 2004):

−Ft = 1 + a/
√

K + (1/9)(a2/K), (14)

equation (7) together with equation (9a) provides

(
ω

ω0

)B

≈ A∗

A

1

1 + a/
√

K + (1/9)(a2/K)
. (15)

This equation is plotted as a dashed curve in figure 6 when K =0.0152 × L2 = 6.10 nm2

(equation (11)). A fairly good agreement of our obtained values with this curve
indicates that the Brinkman medium approximation provides reasonable prediction
for the diffusive permeability of the solutes, if the Darcy permeability is properly
given.

Figure 6 shows that the diffusive permeability normalized by the unrestricted value
decreases with increasing solute radius. In experiments, this decline with molecular
size has been known for a long time as ‘restricted diffusion’ (Pappenheimer, Renkin &
Borrero 1951). The measurements of restricted diffusion of hydrophilic solutes at
walls of microvessels in skeletal muscle showed that it falls by more than an order
of magnitude as molecular radius increases from 0.23 to 3.6 nm (Michel & Curry
1999). This tendency seems in accord with our results shown in figure 6. Since similar
relations between the normalized diffusive permeability and molecular size were
found in other types of microvessel, it is suggested that the detailed structure of the
endothelial surface glycocalyx plays an important role in the size selective properties
of the solute diffusion.

3.4. Reflection coefficient σ

Integrations of equations (8b) and (8c) give the values of σc and σd . These results as
well as σ are plotted in figure 7. The steric condition results in σ = 1 at a =L/

√
3−rf ,

or a = 5.55 nm for L = 20 nm and rf = 6 nm. This is shown as an asterisk in figure 7(a).
From equations (7) and (8c), we have

σd =
2a2

9K

(
ω

ω0

)
. (16)

The dashed curve σ ′
d in figure 7(b) represents equation (16) when equation (15) is

substituted as (ω/ω0) with K = 6.10 nm2. Apparently, G∗/F ∗ ≈ −F0/Ft ≈ 1 for small
a. In this case, we have from equation (8b) that σc ≈ A∗/A′. This is also plotted in
figure 7(b) as a dotted curve σ ′

c.
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Figure 7. (a) The reflection coefficient σ and (b) σc and σd . The solid curves represent the
present results. (b), The dotted curve represents σ ′

c =A∗/A′, and the dashed curve shows
σ ′

d = (2a2/9K)(ω/ω0)
B with equations (11) and (15).

The curve for σ when the above approximate expressions are adopted for σc and
σd is plotted as a dashed curve in figure 7(a). Conventionally, the reflection coefficient
is expressed in terms of the solute partition coefficient φ = A∗/A′ as

σ = (1 − φ)2. (17)

This expression was originally derived by Ferry (1936) for the solute transport in a
circular cylindrical pore, under the assumption that a solute in the pore moves at the
undisturbed local velocity of the solvent, i.e. a Poiseuille flow. Equation (17) is also
plotted in figure 7(a) as a dotted curve. A comparison of equation (17) and our results
indicates that the conventional method (equation (17)) generally underestimates the
reflection coefficient. This tendency is in accord with that for a spherical solute
in a cylindrical pore (Sugihara-Seki 2004), and is understood from the fact that
equation (17) does not account for the retardation of a floating solute owing to the
fluid mechanical interaction between the solute and the boundary walls.

Experiments have shown that, although the absolute values of Lp and ω

to macromolecules vary by several orders of magnitude depending on types of
microvessels, the microvessels in very different tissues have similar values for σ

(Michel & Curry 1999). It has been found that the σ values to serum albumin
(a = 3.6 nm) are nearly equal to 0.8 in many different microvascular beds, including
cat hindlimb, rat hindlimb, dog heart, frog mesentery, rabbit salivary gland and dog
small intestine. The present result shown in figure 7 explains these measurements
much better than previous analyses. This agreement may support the idea that the
reflection coefficient is largely determined by the luminal glycocalyx (Curry & Michel
1980; Hu & Weinbaum 1999).

4. Conclusions
The endothelial cells of microvessels form the critical barrier controlling the

material exchange between circulating blood and body tissues. In order to assess
the contribution of the endothelial surface glycocalyx as a molecular sieve for the
filtering of plasma proteins, we have considered the transport of spherical solutes
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suspended in the fluid flowing between hexagonally arranged cylinders, based on
the quasi-periodic ultrastructural model for the glycocalyx proposed in Squire et al.
(2001). By analysing numerically the Stokes flow around a spherical solute, we have
directly evaluated the transport property of the glycocalyx. The obtained values of
the solute diffusive permeability and reflection coefficient show reasonable agreement
with experimental observations, and suggest that the endothelial surface glycocalyx
forms the primary size selective structure to solutes in microvascular permeability.

The present study is our first approach to understanding physiological functions
of the endothelial surface glycocalyx. We focus here on the effect of its geometry
on the transport property. To arrive at a more comprehensive understanding,
further studies are necessary, including considerations of its surfaces charges, gel-
like state of the fluid inside, detailed structures existing between core proteins, and
so on.

This research has been supported in part by a Grant-in-Aid for Scientific Research
(B) 16360093.
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